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Linear potential theory of steady internal 
supersonic flow with quasi-cylindrical geometry. 

Part 1. Flow in ducts 

By ANDREAS D I L L M A N N  
Deutsche Forschungsanstalt fur Luft- und Raumfahrt, BunsenstraDe 10, 

D-37073 Gottingen, Germany 

(Received 14 March 1994 and in revised form 8 July 1994) 

Based on linear potential theory, the general three-dimensional problem of steady 
supersonic flow inside quasi-cylindrical ducts is formulated as an initial-boundary- 
value problem for the wave equation, whose general solution arises as an infinite 
double series of the Fourier-Bessel type. For a broad class of solutions including the 
general axisymmetric case, it is shown that the presence of a discontinuity in wall slope 
leads to a periodic singularity pattern associated with non-uniform convergence of the 
corresponding series solutions, which thus are unsuitable for direct numerical compu- 
tation. This practical difficulty is overcome by extending a classical analytical method, 
viz. Kummer’s series transformation. A variety of elementary flow fields is presented, 
whose complex cellular structure can be qualitatively explained by asymptotic laws 
governing the propagation of small perturbations on characteristic surfaces. 

1. Introduction 
Because of the continuing interest in high-speed aerodynamics, the theory of 

external supersonic flow past a body of given geometry is well-developed today. A 
great variety of two- and three-dimensional problems has been solved analytically 
and provides the basis for a comprehensive understanding of the underlying physical 
mechanisms. In contrast, the theory of internal supersonic flow, i.e. the flow in 
the interior of a duct of given contour (or in a free jet, which can be considered 
as a limiting case where the guiding surface is formed by the flow itself), is in a 
much more unsatisfactory state. This is especially the case for flows with cylindrical 
geometry, which are of importance in many applications such as supersonic intakes, 
wind tunnels and jet engines. 

Based on a famous paper by Prandtl (1904) on supersonic free jets, von Karmhn 
(1907) was the first to notice that linear potential theory should also be able to 
describe supersonic flow inside a quasi-cylindrical duct; however, he did not carry 
out any calculations. Apparently, the first attempts in this direction are due to 
Ward (1945, 1948), who applied an operational method to obtain a formal series 
solution for the special case of uniform parallel flow entering an axisymmetric duct 
with linearly varying cross-section. He noticed that the resulting flow field contains 
periodically distributed singularities (discontinuities and logarithmic poles), which 
are associated with physical phenomena that linear theory is unable to describe 
adequately, viz. shocks and expansion waves. Unfortunately, these singularities give 
rise to non-uniform convergence and thus to oscillatory behaviour of the partial sums 
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of the corresponding infinite series (‘Gibbs’ phenomenon’), which does not vanish no 
matter how many terms are included into the summation. Thus, the seemingly trivial 
task of computing the flow field from the formal solution turns out to be a formidable 
problem, which indeed has not yet been solved. 

Mack (1947) and later Ludloff & Reiche (1949) developed a supersonic ‘source- 
sink‘ method similar to that devised by von Karman & Moore (1932) for the external 
flow past slender bodies of revolution. They calculated formal solutions corresponding 
to a constant and linearly increasing axisymmetric source distribution on the surface 
of a ‘skeleton cylinder’ and discusssed the possible duct shapes that a superposition 
of such flows may produce. Some aspects of the general problem were studied in 
a subsequent paper by Kolodner (1950). In none of these works however, were 
the obtained series solutions suitable for direct numerical computation because of 
non-uniform convergence caused by singularities and thus for the same reasons as in 
the case of Ward‘s solution. 

Presumably because of these apparent practical shortcomings, the interest in linear 
theory decreased and no significant contribution has been published since 1950. 
There is no reported attempt to extend the theory to the general case of a quasi- 
cylindrical duct of arbitrary geometry and inflow conditions; and quantitative results 
for the few known solutions are still not available. Although various research papers, 
particularly in the closely related field of linear acoustics, discuss the general singular 
behaviour of non-analytic series solutions of the wave equation for the case of 
cylindrical geometry, they almost completely neglect their actual computation. There 
has also been no attempt to apply alternative methods of solving the wave equation 
as for example geometrical acoustics (cf. Friedlander 1958), which however, although 
it circumvents the series representation of singular functions, is of considerable 
mathematical complexity and does not allow a general solution. Consequently, 
problems of cylindrical supersonic duct flow are today tackled rather by numerical 
methods, even in cases where linear potential theory should apply. 

Thus, it must be concluded that the linear theory of cylindrical supersonic duct flow 
is far from being complete and that its capability to describe real flow has remained 
unexplored until the present day. The present paper therefore aims towards filling 
this gap. In $2, the solution for the general case of arbitrary geometry and inflow 
conditions, which is not available so far, is derived by the eigenfunction method. 
The mathematical reasons for non-analytic behaviour and their physical meaning 
are examined in $3, and by extending a classical analytical tool, viz. Kummer’s 
series transformation, the problems associated with the numerical computation of 
non-uniformly converging solutions are completely resolved. Thus, the predictions 
of linear potential theory are made accessible to quantitative evaluation. In order 
also to provide a qualitative understanding of the underlying physical mechanisms, 
asymptotic laws governing the propagation of small perturbations will be derived in 
$ 4. Finally, some elementary examples of axisymmetric and non-axisymmetric flow 
fields will be discussed in detail in $ 5. Besides Ward’s classical solution, this discussion 
also includes several cases for which exact solutions were not previously known. 

2. General theory 
2.1. Mathematical formulation 

Consider the supersonic flow of a compressible medium inside a duct whose contour 
deviates only slightly from that of a right circular cylinder of radius &, with the 
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contour variations in axial and azimuthal direction being small everywhere. Conse- 
quently, the flow can be thought of being composed of a uniform cylindrical flow 
parallel to the duct axis and small superimposed perturbations caused by the deviation 
of the duct surface from ideal cylindrical geometry or by inflow conditions deviating 
from ideal parallel flow. Since the distortion of the streamlines is small, the strength 
of possibly occurring shocks in the flow will be weak. If furthermore viscosity and 
heat conduction are neglected, then the flow can be assumed to be irrotational and 
isentropic. Hence, linear potential flow theory can be applied. 

Take a right-handed system of Cartesian coordinates (x, y, z )  such that the z-axis 
is along the duct axis and z = 0 at the mouth of the tube, and let wo be the velocity 
of the undisturbed flow in the z-direction with the Mach number MO > 1. It is 
well established in linear potential flow theory (see for example Ward 1955), that in 
non-dimensional cylindrical polar coordinates (r, cp, [), which are connected with the 
dimensional Cartesian coordinates (x, y, z )  via 

x = r& cos cp, 

y = r b s i n q ,  
z = [ & ( M i  - 1)1’2, 

(2 .1~)  
(2.lb) 
(2.lc) 

the scalar velocity potential #(r,  cp, [) of small irrotational perturbations of a uniform 
parallel flow in the (‘-direction obeys the well-known wave equation: 

The velocity perturbation vector is given by the gradient of the scalar velocity potential 
# and, consequently, the velocity components u, u, w in the ( r ,  cp, [)-system are given 
by 

(2.3a, b, c) 

If furthermore the fluid under consideration is assumed to be a perfect gas with 
constant ratio IC of the specific heats cp and cv,  then the thermodynamic variables of 
state - pressure p, density p ,  and temperature T - are connected with the velocity 
potential # by its first derivative with respect to [, i.e. with the axial component of 
the velocity perturbation: 

- a# u - - l a #  - 1 a# 
w0 dr’ w0 r a$ w0 - + (Mi - 1)1/2 ag . - 

(2 .4~)  

(2.4b) 

(2.4~) 

where PO,  PO and TO denote pressure, density and temperature in the undisturbed 
parallel flow, respectively. Thus, the theoretical treatment of the complete flow field 
is reduced to the solution of the wave equation (2.2), for which appropriate boundary 
and initial conditions must now be specified. 

Let the contour R(cp, [) of the duct at polar angle cp and distance c from the mouth 
be given by 

R(cp,O = Ro (1 + 4% I ) )  (2.5) 
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with the dimensionless contour function ,I( cp, [) describing the deviation of the duct 
shape from ideal cylindrical geometry. Both ,I(?,[) as well as its first derivatives 
are a priori assumed to be small compared to unity. In consequence of the neglect 
of viscosity, the physical boundary condition of perfect slip must be satisfied at the 
wall, i.e. the flow has to be tangential to the surface of the duct. Mathematically, this 
means that the scalar product of the velocity vector with the surface normal has to 
vanish. By using the elementary methods of differential geometry, this condition is 
easily formulated, and upon neglecting squares and higher powers of small quantities, 
we obtain the linearized boundary condition to be satisfied by the velocity potential 
4 ( r ,  cp, [) on the surface of the semi-infinite cylinder r = 1, [ > 0: 

In order to complete the Cauchy problem for the wave equation (2.2), we further 
have to demand that both the velocity potential 4 and its first derivative with respect 
to 5 are known functions f ( r ,  cp) and g(r ,  q) respectively at [ = 0, i.e. at the entry of 
the duct: 

(2.7a, b )  

From (2.3) and (2.4), the physical meaning of the initial conditions (2.7) is obvious. 
While g(r ,  cp) describes the perturbation of axial velocity and therefore of pressure, 
density and temperature at the entry of the duct, f ( r ,  cp )  corresponds to the perturba- 
tions of the velocity components perpendicular to the tube axis and therefore describes 
deviations from coaxial inflow into the duct. 

Hence, we have reduced the problem of determining the complete internal flow 
in ducts of arbitrary quasi-cylindrical geometry to the solution of the linear wave 
equation (2.2) under the inhomogeneous boundary condition (2.6) and the initial 
conditions (2.7). Once the velocity potential 4 is determined for a particular problem, 
all physical flow variables of interest can immediately be determined by (2.3) and 
(2.4), which relate velocity, pressure, density and temperature to the first derivatives 
of the potential function. 

Note that the above formulation of steady supersonic flow in cylindrical ducts as an 
initial-boundary-value problem for the wave equation (2.2) allows the construction of 
a variety of analogies to other physical phenomena governed by the same equation. 
For example, as has been pointed out by Kolodner (1950), the problem under 
study is identical with that of a vibrating circular membrane with prescribed normal 
derivative at the boundary. Another noteworthy analogy, which appears less artificial 
with respect to the boundary condition, can be constructed by identifying the velocity 
potential 4 with the vertical surface displacement of a shallow liquid pool moving 
under the influence of gravity in a cylindrical containment (cf. Lamb 1975). In 
this case, the inhomogeneity of the boundary condition (2.6) (i.e. the axial duct 
slope) corresponds to the negative radial acceleration of the container walls and, 
thus, the steady compressible flow problem becomes mathematically identical with 
an unsteady hydrodynamic problem, viz. the oscillations of a liquid pool inside a 
cylindrical containment with its walls being in accelerated motion perpendicular to 
its axis. 

2.2. General solution 
As pointed out above, our task consists now in finding the general solution of the 
wave equation (2.2) under the inhomogeneous boundary condition (2.6) and the initial 
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conditions specified by (2.7). It is well established in mathematical physics that, for 
solving a partial differential equation under an inhomogeneous boundary condition, 
the eigenfunctions and eigenvalues of the associated homogeneous problem can be 
used (see for example Courant & Hilbert 1931). In the present case, this means that the 
general solution of our problem is an infinite linear combination of the eigenfunctions 
of the wave equation (2.2) in cylindrical coordinates with the eigenvalues determined 
by the homogeneous form of the boundary condition (2.6), viz. 

Thus, by further requiring the velocity potential and its derivatives to be continous 
on the axis r = 0 except at isolated singular points, the most general form of the 
velocity potential $(r,  cp, c) can be written as 

m m  

+(r, CP, t )  = 7 J m ( p L n r )  [ A m n ( S )  cos + Brnn(C) sinmcpl, (2.9) 
m=O n=l 

where Jrn(x)  are the Bessel functions of first kind and integer order m and the pk,, 
denote the real non-negative zeros of the first derivative J k ( x )  of Jrn(x)  arranged in 
ascending order of magnitude (note that since J i ( x )  = -JI(X), this definition means 
p& = 0): 

JL(flLfl) = 0. (2.10) 
In order to determine the unknown coefficient functions Amfl(c), Brnfl(C) in (2.9), we 
adapt a method described by Tolstov (1976) for the solution of the equation of heat 
conduction under inhomogeneous boundary conditions. By multiplying the solution 
ansatz (2.9) with JP(&r) eiPq and integrating over the unit circle, all terms of the 
infinite sum are vanishing except those with coinciding indices m = p, n = v because 
of the orthogonality of the eigenfunctions. Thus, by using complex notation for 
convenience, we obtain the general relation 

Crnn(0 := A m n ( c )  + iBmn(i) 

For m = 0, the right-hand side of (2.11) has to be divided by 2. Now, by applying 
integration by parts twice with respect to r and cp, respectively, we obtain from (2.11) 

Jm(pLnr) eimqdrdcp 
0 0  

while on the other hand, by differentiating (2.11) twice with respect to c, we have 
(CL,(c) denotes d2Cm,/dc2) 
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Hence, upon multiplying (2.12) by fl:n, adding the resulting equation to (2.13) and 
using both the wave equation (2.2) and the inhomogeneous boundary condition 
(2.6), we finally obtain the following ordinary differential equation for the complex 
coefficient function Cmn([)  = A m , ( [ )  + i B,,,([):  

where as above, the right-hand side has to be divided by 2 for m = 0. Thus, the 
coefficient functions Am,,([), Elm,([) of the velocity potential (2.9) are given as solu- 
tions of the well-known ordinary differential equation for a mass-spring system with 
external exciting force, the eigenfrequency being the zero Pi, of J i ( x )  and the exciting 
force being essentially determined by the axial slope of the duct. The solution of 
(2.14) for any given contour function A ( q ,  [) can be calculated by standard analytical 
methods (e.g. Laplace transformation) and is therefore not a serious problem. The 
initial conditions (2.7) are related to the initial values Cmn(0), Ckn(0) required for the 
solution of (2.14) by taking (2.11) and its first [-derivative, respectively, at [ = 0. 
Thus, by (2.9), (2.11) and (2.14), the general problem can be considered as formally 
solved. 

2.3. Solutions with harmonic azimuthal dependence 

In order to simplify the further discussion without significant loss of generality, we 
will restrict ourselves in the following to problems where the azimuthal dependence of 
the velocity potential is given by the single harmonic function cosmcp (m = 0,1,2.. .). 
Consequently, the contour function A ( q ,  [) must be of the form 

4% i) = Mi) cos mcp , (2.15) 

while the velocity potential (2.9) simplifies to 

m 

4 ( r , ~ , 0  = ~ o s m ~ C ~ m n ( i ) ~ m ( ~ ; n r )  = + m ( r > ~ c o s m ~ .  (2.16) 

The coefficient functions Amn([ )  are determined by the simplified form of the differ- 
ential equation (2.14): 

n= I 

where A;([) denotes d;lm/d[. Finally, the integral relation (2.1 1) simplifies to 

(2.17) 

(2.18) 

both equations (2.17) and (2.18) being valid for all m without division by 2 for m = 0. 
By applying Laplace transformation to the ordinary differential equation (2.17), 
solving for the transform of Amn([)  and inverting by use of the convolution theorem, 
we obtain 



165 

with the initial values A,,(O), Akn(0), which can be related to 4rn and d+,/a[ at [ = 0 
via the integral relation (2.18) and its first derivative with respect to [, respectively 

(2.20a) 

(2.20b) 

Hence, the solution ansatz (2.16) with its coefficient functions Arnn(C) given by (2.19) 
and (2.20) represents the general form of the velocity potential 4 ( r ,  cp, [) for the case 
of harmonic azimuthal dependence cos mq. Similar relations are obtained for the case 
of sinusoidal azimuthal dependence sin mcp and, thus, the most general solution (2.9) 
can be considered as a harmonic Fourier series in q with each coefficient being itself 
an infinite series of the same type as q5m(r, C) in (2.16). 

3. The singularities of internal supersonic flow in cylindrical ducts 
3.1. Conditions for the occurrence of singularities 

In his first investigations on internal supersonic flow in axisymmetric ducts, Ward 
(1945) pointed out that linear potential theory may provide solutions which exhibit 
mathematical singularities at certain locations in the flow field. From a physical point 
of view, these singularities are representatives of phenomena that linear potential 
theory fails to describe adequately, e.g. shock waves and expansion fans. Furthermore, 
the occurrence of singularities in functions described by infinite series gives rise to non- 
uniform convergence and thus to oscillatory behaviour of the partial sums (‘Gibbs’ 
phenomenon’), which seriously hampers the proper numerical evaluation of these 
series. Therefore, the aim of the following considerations is to discuss the singular 
behaviour of the solutions provided by linear potential theory and to devise a general 
method for the practical evaluation of the corresponding non-uniformly converging 
series. 

As already mentioned, we will restrict ourselves to the case of harmonic azimuthal 
dependence of the velocity potential &r, cp, [) as described by (2.16), where the radial 
and axial dependence is given by an infinite series of the form 

n=l 

Series of this type are well known in the mathematical literature as special cases of 
Dini series or Fourier-Bessel series of the second kind (cf. Watson 1944; Tolstov 
1976). The singular behaviour of such series is related to the asymptotic form of their 
coefficients in a quite similar manner as is the case for Fourier series (cf. Lighthill 
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1970). It is elementary to show (Tolstov 1976), that for sufficiently large n, the 
condition 

with 0 < E < 1 and L being some positive constant is sufficient to guarantee uniform 
convergence of the Dini series (3.1) and its first p - 1 derivatives with respect to r 
in [0,1]. Consequently, in order to discuss the singularities of the supersonic flow 
fields under study, we have to examine the general asymptotic behaviour for large 
n of the three integrals involved in the relations (2.19),(2.20) for the coefficients 

Asymptotic expansions of integrals can be derived by appropriate methods de- 
scribed in the literature, e.g. in the textbook by Bleistein & Handelsman (1986). 
The methods which apply to the integrals contained in (2.19),(2.20) are described in 
chapter 6 (especially section 6.3) of this book; the corresponding calculations are 
straightforward but rather lengthy. Therefore, only the results are presented here. 
For the convolution integral in (2.19), we obtain under the assumption that A;([) is 
continuous for [ > 0 

A m n ( 5 ) .  

while for the coefficient integrals (2.20), which are both of the same type, we get 

where ~ ( r )  is a function representing either $m(r, [) or its first derivative with respect 
to 5 at [ = 0. (On deriving (3.4), it has further been assumed that X(r) is continuous 
in [0,1] and that ~ ( 0 )  = 0 except in the axisymmetric case m = 0, where finite values 
are allowed at r = 0.) By substituting (3.3), (3.4) into (2.19), (2.20) and considering 
(2.15), (2.6) and the inequality 

with L being some positive constant (Tolstov 1976), we obtain the following asymp- 
totic expression for the coefficient functions Ant,([) of the velocity potential (2.16): 

&(O) - n;(+o) 2 cos p;,1 
= (Mi - 1)1/2 (P:,-m2) J ~ ( P ~ , )  

where r m ( x )  is some bounded function with bounded first derivative for x + 00, 
whose exact form depends on the particular initial and boundary conditions and is 
not of interest here. If now (3.6) is substituted into the ansatz (2.16) for the velocity 
potential, each term on the right-hand side will produce a Dini series of the same 
type as (3.1). 
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Since the third term in (3.6) varies in magnitude as (/16n)-5/2, it follows immediately 
from (3.2) that both the corresponding Dini series 

as well as its first derivatives converge uniformly and, thus, represent bounded 
continuous functions throughout the field. 

By using the inequality ( 3 . 9 ,  we obtain the result that the second term in (3.6) 
varies in magnitude as (P6n)-3/2.  Thus, the corresponding series expression 

converges uniformly, but not its first derivative with respect to r .  The non-uniform 
convergence is a natural result of the fact that by prescribing the inhomogeneous 
boundary condition (2.6), we have demanded a non-vanishing first derivative @ / &  
of the velocity potential at r = 1, although upon differentiation of the general solu- 
tion (2.9) with respect to r ,  all terms of the resulting infinite series formally vanish 
at r = 1 so that a discontinuity must necessarily arise at this location. There- 
fore, the non-uniform convergence is merely due to ‘mathematical embarassment’ 
and not to singularities corresponding to real physical effects. Indeed, it can be 
shown from (2.18), that the Dini series in (3.8) can be expressed in closed analytical 
form : 

= ( y 2 -  i) , (3.94 

(3.9b) 
1 
m 

- - - r m ,  m > O ,  

where the functions on the right-hand sides and all their derivatives are bounded 
and continuous on [0,1]. (Note that for m = 0, the summation has to start at 
n = 2, since PA1 = 0.) Consequently, the second term on the right-hand side of 
(3.6) also corresponds to a bounded continuous function with bounded continu- 
ous first derivatives throughout the field, provided that d22,/dr2 is continuous for 

> 0. 
Like the second term, the first term on the right-hand side of (3.6) also varies as 

(P6,)-3/2. Thus, the corresponding series expression 

(3.10) 

converges uniformly, but neither its first derivative with respect to r nor its first 
derivative with respect to [ converge uniformly. As obvious from the prefactor, terms 
of the form (3.10) only arise if Ak(0) # &(+O), i.e. if there is a discontinuity in 
the slope of the boundary streamline at [ = 0. This result strongly suggests that 
singularities should be present in the flow field, since it is known that physically the 
abrupt bending of streamlines implies the occurrence of shocks or expansion waves 
in supersonic flow. Unfortunately, it does not seem possible to sum (3.10) to a closed 
expression which would allow an immediate discussion of its singularities. 
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However, the results obtained so far allow at least the separation of the bounded 
continuous parts of any given solution (2.16) from the part which presumably contains 
singularities of physical relevance, viz. (3.10). By writing the Dini series (3.10) in the 
form 

(3.11) 
fl= I 

where in order to avoid an undetermined expression at m = 0, n = 1, the coefficients 
a m f l ( [ )  are defined by 

m = O , n = l  

(3.12) 

we obtain for any Dini Series (3.1) by suitable addition and subtraction of (3.12) the 
following general expression : 

00 

4 m ( r ,  i) = ~ 1 ’  s m ( r ,  i) + C ( A m ( [ )  - ~ 1 ’  a m n ( [ ) )  J m ( P k n r )  7 (3.13) 
fl=l 

where for brevity, AX denotes 

(3.14) 

From the previous discussion, it is obvious that the continuous bounded part of the 
solution is now represented by the explicit sum on the right-hand side of (3.13), while 
any singularities which may occur upon abrupt bending of the streamlines at [ = 0 
(i.e. AA’ = 0) are contained in the first derivatives of Sm(r,[) .  Hence, we have shifted 
both the general discussion of the singularities and the practical problems arising 
from non-uniform convergence to the evaluation of the first derivatives of Sm(r,  [). 

Note that in this subsection, only the case of a discontinuity of wall slope at [ = 0 
has been considered, but the analysis may be repeated with minor modifications to 
determine the singularities associated with other types of discontinuity in the wall. In 
particular, for discontinuous curvature, all velocity components are continuous and 
the results given here apply directly to the axial gradients of the velocity components, 
while the results for the radial gradients can be obtained in a similar manner. In 
addition, since the problem is linear, all results also hold for discontinuities located 
at any other point of the wall. 

3.2. The evaluation of the first derivatives of Sm(r, [) 
By the considerations of the previous subsection, we have reduced the general dis- 
cussion of the singularities in supersonic duct flow and the evaluation of the corre- 
sponding non-uniformly converging series to the evaluation of the first derivatives 
of the series Sm(r,[) ,  whose universal character has thus become obvious. From the 
mathematical literature, several analytical methods are known for the evaluation of 
non-uniformly converging infinite series. One of these methods and probably the best 
candidate for handling such series is an algebraic transformation which was found 
by E.E. Kummer in 1837 (cf. Knopp 1928). The basic idea behind Kummer’s series 
transformation is to subtract from a given series a suitably chosen one, the so-called 
comparison series, which has about the same poor rate of convergence, but whose 
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sum can be determined in closed analytical form. To fix notation, suppose that the 
given series is 

m 

S=Cs, 
n=l  

and suppose that we know the sum 
m 

(3.15) 

(3.16) 
n= 1 

where s, and S, are asymptotically equal in the following manner: 

(3.17) 

Then, by simply subtracting (3.16) from (3.15), the unknown sum S can be written as 
m - ~. 

S = ;T + X(S. - S n )  = S + R .  (3.18) 
n=1 

Thus, we are reduced to computing the remainder series R, which by (3.17) converges 
uniformly and thus approaches a continuous function rather rapidly, while the sin- 
gularities of the given series (3.15) are now buried in the closed expression ? for 
the comparison series (3.16). Therefore, the singularities of S can be discussed by 
discussing the singularities of 5, while the evaluation of the remainder series R is not 
hampered by non-uniform convergence any more. 

Hence, by adopting the notation introduced in (3.15)-(3.18) and writing the first 
derivatives of S m ( r , i )  in the form 

where ~ ~ ~ , ~ ( r , ( ) ,  smn,c(r,[)  denote the derivatives of the terms of (3.11) 

m = O , n = 1  

m = O , n  = 1 10 

( 3.19~) 

(3.19b) 

(3.20~) 

(3.20b) 

our problem consists in finding appropriate comparison terms Smn,r ( r ,  i), Smn,c(Y, i) 
which have the desired asymptotic behaviour (3.17) and, furthermore, allow the 
analytical summation of closed expressions Sm,r(r, i), ?nl,c(r, i). 

Suitable comparison series can be obtained by replacing the Bessel functions, their 
derivatives and the roots of the derivatives by their asymptotic expansions. For the 
Bessel function Jm(x)  and its derivative J k ( x ) ,  the following asymptotic expansions 
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are valid for large arguments x (Abramowitz & Stegun 1972): 

cos (x-mn/2-n/4) + 0 (3.2 1 a)  
1/2 

Jrn(x) rV ($) 
1/2 

sin (x-mn/2-7~/4) + 0 (3.21b) 

while the roots flLn of JL(x) have an asymptotic expansion for large n: 

(3.2 1 c) 

By substituting (3.21) into (3.20), we obtain the following asymptotic expansions, 
which are valid for large n: 

provided that r > 0. When r = 0, r must be put equal to zero before introducing the 
asymptotic expansions (3.21), and we get 

( 3 . 2 3 ~ )  

(3.23b) 

since Jrn(0) = 0 for all m # 0 and JL(0) = 0 for all m # 1. Obviously, the asymptotic 
expansions (3.22), (3.23) satisfy (3.17), and thus their leading terms can be used as 
comparison terms for the derivatives (3.19) of &(r, C). 

Hence, by introducing the notation 

(3.24b) 

(3 .24~)  
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we can write the comparison terms Smn,r(r, [), Smn,c(r, [) in the form 

171 

-r-”* [ymn(r+[-l) - ymn(r-[-l)] r > o 
Smn,c(r, 5) = (27~)”~ son([) r = 0, m = 0 (3.25b) 

{o otherwise, 

while the comparison sums gm,r(r,[), gm,t;(r,<) can be expressed as 

+.-I12 [Ym(r+[-l) + Ym(r-[-l)] r > 0 - 
Sm,r(r, i) = -(7~/2)’/~ a,([) r = 0, m = 1 (3.26~) G otherwise, 

+-1/2 [Ym(r+[-l) - Ym(r-[-l)] r > O 

gm,c(r, C) = (27~)’/~ QO([) r = 0, m = 0 (3.26b) 

{o otherwise, 

and are thus completely related to the simple Fourier series (3.24), whose closed 
sums remain to be determined. As has been shown by Dillmann & Grabitz (1994), 
Fourier series of a similar type, which arise in connection with comparison series for 
Fourier-Bessel series of the first kind, can be summed analytically by use of Lerch’s 
transcendent function. This method also applies in the present case and yields the 
following closed expressions for the Fourier series (3.244 : 

m/2 sinpbnx 1 7cx 1 1 -sinnx/4 + - sgn sin - - - In 
2 4 27c 1 +sinnx/4 

m even, 
n=l  

(m-1)/2 . 
(3.27) 

-%zr  
sinp;,x 1 nx 1 1 -sinnx/4 

2 4 2n 1 +sinnx/4 
+ - sgn sin - + - In m odd, I - x T -  n=l  

yfm(x) = 

where sgnx denotes the signum function, which gives -1,0 or +1 depending on 
whether x is negative, zero or positive. As is obvious from (3.27), Ym(x) is a 
periodic function with period 8, which has discontinuities of magnitude 1 at x = 0, 
f4 ,+8 . .  . due to the signum function and logarithmic poles of alternating sign at 
x = +2,+6,+10... . A graph of Ym(x) is given for m = 0 and m = 1 in figure 1 
(note that for higher values of m, Y,(x) differs from these cases only by a bounded 
function, since the sums in (3.27) are finite). For the two Fourier series (3.24b) and 
(3.24c), we obtain the analytical sums 

Qo(x) = 1 [. (F) - z (G) - z ( 8) 7 + x  + z ( s)] 7 - x  7 (3.28) 

a l (x)=-  1 [z(-K) 7 + x  + Z ( y )  -Z(8) 3 + x  - Z ( v ) ]  , (3.29) 2( 2n)1/2 
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FIGURE 2. The functions &(x) and Stl(x) for 0 < x < 8. 

X 

where Z(x) denotes a function of period 1, which in [0,1] is identical with the special 
case s = of Riemann’s generalized zeta function i (s,x) (cf. Whittaker & Watson 
1927). Tables and computational relations for i ( i ,x )  have been given by Powell 
(1952). Since for x + 0, [( i, x) approaches infinity as x d 2 ,  Z(x) exhibits the same 
behaviour whenever its argument is an integer number. Consequently, the functions 
&(x) and i 2 1  (x) are functions of period 8 and exhibit inverse-square-root singularities 
at x = +1, f3,  f 5 . .  . as shown in figure 2. 

Since now both the comparison terms (3.25) as well as the closed comparison 
sums (3.26) are completely determined, Kummer’s series transformation (3.18) can be 
applied to evaluate the derivatives (3.19) of S m ( r , ( )  and to discuss the nature and 
location of their singularities. On considering the arguments of Y,(x) in (3.26), we 
obtain the result that for r > 0, both S, ,Jr , ( )  and S, , ( ( r , ( )  have discontinuities at 
( r  & ( - 1) = 4k and logarithmic poles at ( r  & ( - 1) = 4k + 2, k being an integer 
number. If these locations are plotted in the (r,()-plane, we obtain a periodic zig- 
zag Mach line pattern as illustrated in figure 3. On crossing the axis r = 0, the 
type of singularity is always changed from discontinuity to logarithmic pole or vice 
versa, while the type remains the same on reflection at the wall r = 1. In all cases 
m > 1, the axis remains undisturbed, whereas for m = 0 and m = 1, Sm,((0,()  and 
S,,JO, 5) exhibit inverse-square-root singularities at ( = 1,3,5.. ., respectively, i.e. at 
the locations where the singularities cross the axis and change their type. Since 
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according to (3.13)’ the discussed singularities are present whenever abrupt bending 
of the boundary streamlimes occurs at 1 = 0 and thus, in physical reality, shock or 
expansion waves are produced, the obtained results strongly corroborate the intuitive 
conjecture that the mathematical singularities represent physical phenomena which 
linear potential theory fails to describe correctly. 

Besides discussing the singularities of the derivatives of S m ( r , l ) ,  we are now also 
able to perform their proper numerical evaluation by applying Kummer’s series 
transformation (3.18). The practical need for this method and its efficiency are 
demonstrated in the following for the series 

(3.30) 

which describes the dimensionless perturbation of axial velocity on the axis for the 
axisymmetric case. Figure 4(a) shows the result of a direct evaluation of (3.30) without 
performing Kummer’s series transformation. The non-uniform convergence produced 
by the singularities of So,[(O,() manifests itself in strong oscillations of the curve 
(Gibbs’ phenomenon), which do not vanish no matter how many terms are included 
into the sum (30 terms in figure 4a). If Kummer’s series transformation is now applied 
to So,[(O,[), we obtain with the notations (3.19b), (3.2%) and (3.26b) 

n= 1 

00 

n=l  

where 

- 1 3 + 1  3 - r  7 + 1  
So,[(O, i) = 5 [. (8) - z (8) - Z ( 8) + Z ( y)] , (3.32~) 

and thus the singularities of So,[(O,<) are shifted to the closed expression (3.32~), 
whereas the remainder series (3.32b) converges uniformly and thus approaches a 
continuous function after inclusion of 2&30 terms. Both the comparison sum 
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FIGURE 4. The efficiency of Kummer’s series transformation demonstrated for the series SO,;(O, 0. 
( a )  Result of a direct computation using 30 terms of (3.30). (b )  Closed comparison sum ( 3 . 3 2 ~ )  and 
continuous remainder series (3.32b) (30 terms). ( c )  So,c(O, () obtained by adding comparison sum 
and remainder series according to (3.3 1). 

- 
So,c(O, [) and the continuous function &,((0, [) are presented in figure 4(b). Finally, 
figure 4(c) shows So,c(O,[) obtained via (3.31), i.e. by simply adding &(O,[) and 
&,c(O,[). By comparing the result obtained by direct summation with the result 
provided by Kummer’s series transformation, the advantage of this method becomes 
immediately obvious. 

Consequently, by means of the results obtained in this section, we can immediately 
evaluate any solution (2.16) by using the following procedure. 

(i) Decompose the function cffm(r,[) via (3.13) into a part AA’S,(r,[) containing 
the singularities and a uniformly converging sum with uniformly converging first 
derivatives. (Note that this decomposition becomes trivial if AA’ = 0, i.e. if no abrupt 
bending of the boundary streamlines occurs at [ = 0.) 

(ii) Evaluate the uniformly converging part of the solution by direct summation and 
evaluate the derivatives of &(r, [) by Kummer’s series transformation as described in 
this section. Because of the universal character of Sm(r, [), the results of this evaluation 
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FIGURE 5. Characteristic surface consisting of alternating coaxial Mach cones. 

need be tabulated just once, or the above evaluation scheme can be implemented as 
a function in a computer program. 

4. Asymptotic reflection and transmission laws 
Before now applying linear potential theory as derived in the previous sections, we 

will consider the general rules which govern the propagation of small perturbations 
in supersonic duct flow. It is well established in mathematical physics (cf. Courant 
& Hilbert 1931) that in the case of phenomena being described by hyperbolic partial 
differential equations like the wave equation (2.2), small disturbances propagate along 
characteristics, which thus represent ‘natural coordinates’ for the problem under 
study. As before, we will restrict ourselves to the special case (2.16) of harmonic 
azimuthal dependence of the velocity potential $(r,  q,[). If the solution ansatz (2.16) 
is substituted into the wave equation (2.2), we obtain the following partial differential 
equation to be satisfied by the function $ r n ( r , [ ) :  

From the elementary theory of partial differential equations (cf. Courant & Hilbert 
1931), it is easily verified that (4.1) is of hyperbolic type and that its characteristics 
are given by 

r & [ = const. ( 4 4  
which can be interpreted as an infinite family of Mach cones arranged coaxial to 
the flow axis r = 0 with their base circles and vertexes coinciding in an alternating 
manner as illustrated in figure 5. Furthermore, since (2.17) is the ordinary differential 
equation of a harmonic oscillator, it is clear that the coefficients Am,,([) will essentially 
be given by harmonic functions; hence the velocity potential (2.16) will in general 
arise as an infinite linear combination of the spatial modes 

+rnn(r, CP, i) = Jrn(Pknr) eiBmni cos m q  > (4.3) 

which by substituting the asymptotic expansions (3.21) for the Bessel function Jrn(x)  
and the zeros Pk,, of its derivatives, can be asymptotically decomposed into two parts 
propagating on Mach cones r + [ = const. and r - [ = const., respectively: 

$rnn(r, CP, i) @+(r, CP, O + @-(r ,  CP, i) 9 (4.4) 
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where 

Note that for r +. 0, the perturbations increase in magnitude as r-'l2, which is 
physically plausible since on approaching the axis they are focussed into a single 
point. This characteristic feature of cylindrical supersonic flow has been mentioned 
by Ward (1948), who called the general phenomenon the 'radial focussing effect'. 
Mathematically, a perturbation (4.4) can thus be considered as being composed 
of two parts, each one travelling on an upstream and downstream characteristic, 
respectively. However, it is an experimentally verified fact that physical perturbations 
in supersonic flow can only travel on downstream characteristics. Thus, on following a 
perturbation on its way through the flow field, only its downstream component is to be 
considered. By means of the decomposition (4.4), we will in the following investigate 
the laws governing the asymptotic behaviour of its corresponding components for the 
case of transmission through the axis and reflection at the wall, respectively. 

Consider a small harmonic perturbation which is originating, say, at the duct wall 
r = 1 at an arbitrary location [ = [' - 1, cp = cpo and is traveling towards the axis on 
the characteristic r + [ = [*. Hence, upon substituting the path of propagation into 
the corresponding part of (4.4), the perturbation can asymptotically be written as (C 
denotes a constant) 

(4.5) 

At r = 0, the perturbation crosses the axis, thus entering the half-plane cp = cpo + 71: 

and changing to the characteristic r - = -[*. Consequently, we obtain under 
consideration of (3.21~) 

G+(r ,  cp, 0 = $ eipkn(c*-I) cos myo . 

and thus the basic result that upon crossing the axis, a perturbation suffers an 
asymptotical phase shift of 4 2 .  In figure 6(a), this result is graphically illustrated in 
an axial section cpo, cpo + 71: for a disturbance which initially varies sinusoidally with 
respect to the surface of a Mach cone with vertex in [ = [C;. 

The case of a perturbation being reflected at the duct wall at r = 1, [ = [' is 
treated in a quite similar manner. On travelling from the axis to the duct wall, the 
disturbance propagates along the downstream characteristic r - [ = 1 - [*. When 
reflected at the wall, it remains in the same half-plane cp = cpo and changes to the 
characteristic r + [ = 1 + ['. Hence, on substituting the propagation path into the 
corresponding components of (4.4), we obtain identical expressions : 

G+(r,  cp, = Q-(r ,  cp, = 2 r1/2 eiphnc. cos mcpo (4.7) 

and thus the second basic result that asymptotically, the perturbation suffers no phase 
shift upon reflection at the wall of the duct, as illustrated in figure 6(b). 

Because the first derivative of (4.3) with respect to [ has the same functional form 
as (4.3) itself, the above results are valid for all flow variables (2.3) and (2.4) except 
for radial velocity, which depends on i34/i3r. In this case, an expression similar to 
(4.4) can be derived on the basis of the asymptotic expansion (3.21b) for J k ( x )  with 
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FIGURE 6. Asymptotic propagation laws for a sinusoidal perturbation. (a) Transmission through 

the axis r = 0 resulting in a phase shift of x /2;  (b)  reflection at the wall r = 1 without phase shift. 
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5 
FIGURE 7. Asymptotic propagation laws for a sinusoidal density perturbation travelling through a 

cylindrical duct. Areas of compression are indicated by dark shading. 

the result that a radial velocity perturbation suffers an asymptotical phase shift of 
-n/2 upon crossing the axis, and of x when reflected at the wall. 

As an illustrative example, the propagation of an initially sinusoidal wave, e.g. a 
density perturbation, is presented in an axial section in figure 7. Starting at r = 1, 
cp = cpo, [ = 0 with a skewsymmetric shape (i.e. expansive on the upstream side 
and compressive on the downstream side of the corresponding Mach cone), the 
perturbation is travelling towards the axis. On crossing the axis at r = 0, [ = 1 and 
entering the half-plane cp = q0 + x, the perturbation suffers a phase shift of x / 2 ,  
being thereby transformed into a symmetric compression wave, i.e. its symmetry with 
respect to the characteristic is changed. The transformed wave is reflected without 
change at r = 1, cp = cpo + x, [ = 2 back towards the axis. The second crossing of the 
axis at r = 0, [ = 3, results again in a phase shift of n/2, i.e. in the transformation 
into a skewsymmetric compression+xpansion wave, which is propagating back into 
the half-plane cpo. At r = 1, [ = 4, it is again reflected towards the axis r = 0, [ = 5, 
where it is transformed into a symmetric expansion wave when entering the half-plane 
cp = cpo + 7c. Finally, after identical reflection at r = 1, [ = 6,  the perturbation is 
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FIGURE 8. Spherical inflow into an ideal cylinder. (a)  Problem geometry; ( b )  dimensionless density 
perturbation 6 p ( v , ( )  at the duct wall (top), inside the duct (middle) and on the duct axis (bottom); 
( c )  dimensionless perturbation 6u(r, () of radial velocity. 



Internal supersonic flow in cylindrical ducts 179 

{= 0 

{= 1.5 

FIGURE 9. Spherical inflow into an ideal cylinder. Surface plots of the dimensionless density 
perturbation 6 p ( r ,  [)  in the semicircle 0 < I < 1, 0 < cp < 72: at various locations [ = const. 

transformed back into its initial expansionxompression shape upon crossing the axis 
at 5 = 7, so that after reflection at r = 1, 5 = 8 the whole cycle starts again. 

If now a flow variable is mathematically represented by an infinite non-uniformly 
converging series in terms of the elementary modes (4.3), then its singular behaviour 
is solely determined by the large-n asymptotic form of these modes (cf. 0 3). Since the 
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variation in the immediate neighbourhood of a characteristic is the same for all modes, 
it is evident that in the case of non-uniform convergence, a sinusoidal variation gives 
rise to a discontinuity, while the symmetric cosine variation results in a logarithmic 
pole. Thus, the singularity pattern in figure 3 is easily explained. In addition, since the 
single modes vary asymptotically in magnitude as r-1'2, regions of extreme magnitudes 
of the flow variable are to be expected in the vicinity of a logarithmic singularity close 
to the axis. These qualitative conclusions will be confirmed in the following section. 

Thus, the basic mechanisms of supersonic flow in cylindrical ducts have been 
qualitatively identified for the case of harmonic azimuthal dependence of the velocity 
potential. On approaching the axis, the perturbations increase in magnitude asymp- 
totically as r-'l2, while they decrease in the same manner as the wall is approached. 
To a first degree of approximation, all perturbations are reflected without phase shift 
except the velocity component normal to the wall, which is reflected with a phase shift 
of 7c. Note that for plane flow, the same results are exactly valid. A very interesting 
phenomenon is the phase shift of f n / 2  upon transmission through the axis, which 
changes the symmetry properties of a wave with respect to the characteristic and has 
no analogy in plane flow. 

5. Examples of supersonic flow in ducts 
5.1. Spherical inflow into an ideal cylinder 

Consider an ideal right cylinder of constant circular cross-section with its entry at 
[ = 0. A spherical sonic source with purely radial supersonic flow field is located at 
[ = -L in front of the cylinder on its axis, as illustrated in figure 8(a). (Note that 
such a sonic source represents an exact solution of the nonlinear equations of motion, 
cf. Oswatitsch 1952.) If we assume the distance L to be large compared to unity, i.e. to 
the radius of the cylinder, then we can expand the spherical velocity field in a Taylor 
series in the entry plane [ = 0 to obtain the approximate velocity components u,v, w 
in cylindrical polar coordinates ( r ,  cp, [) : 

where 
1 

& =  - 4 1  e 

@ l a ,  b , c )  

(5 . ld)  

and the normalization velocity wo corresponds to the velocity of the source flow 
field at radial distance 8 from the centre of the source. (The same holds for all 
normalization quantities Mo, po, po and To.) Consequently, upon neglecting squares 
and higher powers of the geometry parameter 8, we obtain via (2.3) the following 
initial conditions (2.7): 

- +const. , ('22 ) & 
(5.2a) 

(5.2b) 

while for the cylinder, the boundary condition (2.6) is simply given by 
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Hence, from (2.19) and (2.20), we obtain the velocity potential 
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where the free constant in (5.2a) has been chosen as -1/4 in order to avoid constant 
terms in (5.3), cf. (3.9a). Thus, the physical meaning of the series S m ( r , c )  is obvious 
for the axisymmetric case m = 0. 

By means of (2.3) and (2.4), all physical flow variables of interest can now be deter- 
mined in a straightforward manner. If we introduce the dimensionless perturbations 
6p(r ,  5) and 6u(r, c), we obtain for example 

(5.4a) 

(5.4b) 

where 

6P(r,  0 = -So,&, 0 , W r ,  0 = So,r(r, 0. (5.5a, b) 
Contour plots of the dimensionless perturbations (5.5) are presented in figures 8(b) 
and 8(c), respectively. In order to provide an impression of the radial density profiles, 
figure 9 additionally shows surface plots of 6 p ( r , [ )  in the semi-circle 0 < r < 1, 
0 d cp d n: for various locations i: = const. At the entry ( = 0 of the tube, all 
boundary streamlines are bent abruptly towards the axis, thus inducing compression 
waves propagating along the downstream surface of the leading Mach cone with 
base circle in i = 0 and vertex in [ = 1, while the flow inside the cone is further 
expanding. Thus, on the leading characteristic r + [ = 1, a discontinuous perturbation 
which is expansive on the upstream side and compressive on the downstream side of 
the characteristic is propagating towards the axis. As already mentioned at the end 
of 9 4, this situation corresponds qualitatively to the example discussed in figure 7. 
Therefore, the spatial structure of the flow field can be explained by the asymptotic 
transmission and reflection laws of the previous section, keeping in mind that the 
non-uniform convergence of the derivatives of So(r, () will produce logarithmic poles 
or discontinuities at those locations where the asymptotic perturbations (4.4) exhibit 
symmetry or skewsymmetry, respectively. 

By radial focussing, the compressive parts of the discontinuous wave increase 
strongly in magnitude on approaching the vertex of the leading Mach cone. On 
transmission through the axis, the discontinuous expansionsompression wave is 
transformed into a wave which is purely compressive on both sides of the leading 
characteristic and produces a region of extremely high density (indicated by dark 
shading in figure 8b) in the downstream vicinity of r = 0, [ = 1. At the wall of 
the tube at r = 1, ( = 2, the purely compressive wave is reflected as a wave of 
the same type in agreement with the asymptotic reflection law and, by radial fo- 
cussing, produces again a high-density region on the axis in the upstream vicinity 
of ( = 3. On once more crossing the axis, the purely compressive wave is trans- 
formed back into a discontinuous wave, which now is compressive on the upstream 
side and expansive on the downstream side of the characteristic r - [ = 3. Being 
reflected at the wall at i = 4, the compressiveeexpansive perturbation travels back 
to the axis, where at [ = 5,  it is again transformed into a purely expansive per- 
turbation forming a region of extremely low density (indicated by lighter shading 
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in figure 8b) in the upstream vicinity of r = 0, i = 5. Finally, upon reflection at 
the wall at 5 = 6, an identical low-density region is formed in the upstream vicin- 
ity of r = 0, i = 7; and after transmission through the axis and reflection of the 
resulting discontinuous expansion-compression wave at r = 1, [ = 8, the whole 
cycle starts again. This process is continuously repeated for increasing values of 
i; because of the incommensurable eigenvalues however, the wave pattern is 
never strictly periodic and thus much more complicated compared to plane flow, 
where the wave type remains unchanged and the flow field is strictly periodic without 
singularities. 

Obviously, the cylindrical geometry causes a complex flow field, whose main 
features are non-periodicity, radial focussing and the transformation of wave type by 
crossing of the axis. Since according to (3.13), the series So(r,i) occurs whenever a 
discontinuity of wall slope is present at i = 0, the qualitative validity of the above 
discussion is of universal character and not restricted to the simple case considered 
here. 

5.2. Coaxial inflow into an axisymmetric pipe with linearly varying cross-section 
A problem closely related to the example discussed above is the uniform coaxial 
inflow into a pipe whose cross-section varies linearly with the axial coordinate. The 
formal solution of this problem and a discussion of the singularities of the flow field 
was first given by Ward (1948). However, Ward did not evaluate his formal solution 
because of the non-uniform convergence of the Dini series involved. 

Consider a uniform coaxial supersonic flow with velocity wo and Mach number MO 
entering a pipe with linearly varying cross-section as sketched in figure 10(a). The 
problem is described by the following initial and boundary conditions : 

4% 5) = E i , (5.6b) 

where the geometry parameter E denotes the constant slope of the contour function, 
which for small positive or negative values is approximately equal to the angle of 
divergence or convergence of the duct contour, respectively. By substituting (5.6) into 
(2.19), (2.20), we obtain 

Since Pbl = 0, an undefined expression of the form 'O/O' arises for n = 1 ; consequently, 
Ao1([) must be determined by a limiting process. By applying de 1'Hospital's rule, we 
obtain from (5.7) 

Hence, the velocity potential assumes the following form 

where the infinite series in brackets converges non-uniformly in consequence of the 
singularities caused by abrupt bending of the boundary streamlines at 5 = 0. By 
applying the decomposition (3.13), we can separate the singular part in terms of 
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S o ( r , i ) ,  while the remainder series is identical to (3.9a) and can thus be written in 
closed form: 

(5.10) 

Hence, the evaluation of the flow field has again essentially been reduced to the 
evaluation of the derivatives of So(r ,c) .  In a similar manner as in the previous 
example, we can for example define the dimensionless density perturbation 6 p ( r ,  i) : 

where 

(5.11) 

(5.12) 

and po denotes the density in the undisturbed coaxial inflow. 
If for example we consider a diverging tube (i.e. E > 0), the flow can be regarded as 

a superposition of a pure expansion due to the increase of cross-section (described by 
the first two terms in the square brackets of (5.10)) and, because of the negative sign 
of So(r, i), a converging inflow into an undeformed tube. In the interior of the leading 
Mach cone, both components cancel out and thus the flow remains undisturbed, while 
in consequence of the outward bending of the streamlines at the tube edge r = 1, 
i = 0, an expansion wave is propagating towards the axis to end up as a region of 
extremely low density in the downstram vicinity of r = 0, [ = 1. The dimensionless 
density perturbation is presented in figure 10(b). It is obvious from (5.10) that besides 
the superimposed pure expansion effect, the whole discussion of the flow field can 
be done analogously to the previous example by simply exchanging compression for 
expansion and vice versa. Since however the magnitude of the density perturbation is 
increasing linearly without limit for increasing [, it is clear that even for small values 
of the divergence rate E, the validity of the solution (5.10) is limited to values of [ 
which are much smaller than 1 / ~ .  

5.3. Coaxial inflow into a wavy axisymmetric duct 

While the supersonic flow past a wavy wall represents a well-known textbook example 
for the case of plane flows, no solution has been found yet for the case of internal 
flow with cylindrical geometry. For the axisymmetric case of uniform coaxial inflow 
into a sinusoidally deformed tube starting with an initial contour contraction, the 
initial and boundary conditions can be written as follows : 

(5.134 

A ( q ,  i) = -E sin co( , (5.13b) 

with E being the dimensionless amplitude of the contour function and o its spatial 
frequency with respect to the dimensionless spatial coordinate 5. By substituting 
(5.13) into (2.19) and (2.20) and using the identity 

(5.14) 
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FIGURE 10. Coaxial inflow into a linearly diverging axisymmetric pipe. (a) Problem geometry; (b)  
dimensionless density perturbation 6 p ( r , ( )  at the duct wall (top), inside the duct (middle) and on 
the duct axis (bottom). 

which can be proved by expanding the function Jo(cor) into a Dini series via the 
integral relation (2.18), we obtain the velocity potential 

(5.15) 

provided that o does not coincide with one of the zeros /?hn of Jh(x) (in this case, we 
obtain a resonance solution whose magnitude is increasing without limit for increasing 
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5). Similarly, if the duct geometry is defined by the contour function 

A ( q ,  i) = & cos 0 5  (5.16) 

we obtain the velocity potential 

(5.17) 

Although the both solutions (5.15) and (5.17) look formally very similar at a first 
glance, there is a fundamental difference between them. While the series T(r,  5) 
and its first derivatives converge uniformly and thus all flow variables described by 
(5.17) are bounded and continuous throughout the field, this is not the case for 
the first derivatives of the series R(r,(). Consequently, the flow field described by 
(5.15) exhibits the same singularities as the ones discussed in the previous subsections. 
From a physical point of view, the difference between the two solutions is due to the 
abrupt bending of the boundary streamlines in the sinusoidal case (5.15), whereas in 
the case of (5.17), the duct shape starts with zero initial slope and thus the initial 
boundary streamline deflection is relatively smooth. Consequently, depending on the 
initial slope of the wall contour, the flow patterns obtained in wavy ducts of the 
same deformation rate E and spatial deformation frequency w can be completely 
different. 

For the numerical evaluation of the series expressions describing the flow variables 
in the case of sinusoidally deformed ducts, the singular part of the series R(r,[)  must 
be written in terms of So(r ,5 ) .  By applying the decomposition (3.13) to (5.15), we 
obtain 

(5.18) 

where the infinite series on the right-hand side and its first derivatives converge 
uniformly, thus representing continuous bounded functions throughout the field. 

In figures 11 and 12, the dimensionless density perturbations 6p(r, 5) resulting from 
(5.15) 

and (5.17) 

(5.19) 

(5.20) 

are presented for the spatial deformation frequencies w = 7c/3 and 27c/3. From 
the graphical representation, the fundamental differences between the two cases are 
clearly obvious. While in the case of sinusoidal deformation, the density pattern is 
mainly determined by the singularities and radial focussing and thus looks similar 
to the cases discussed above, the velocity potential (5.17) describes a continuous 
density field where singularities occur only in the density gradients, thus leading 
to kinks in the lines of constant density (indicated by the thin zigzag lines in 
figure 12). 

Note that for the case of the contour function A(() being a general periodic function 
with period o, the velocity potential 4 ( r ,  5) appears as an (infinite) linear combination 
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of potentials of the type (5.15) or (5.17) with commensurable spatial frequencies no, 
n = 0,1,2, ... . It is interesting that in this case, a part of the solution arises in the 
form of so-called Schlomilch series, i.e. series of the form 

a 

n= 1 

(cf. Watson 1944), which thus present themselves naturally as particular solutions in 
the problem of supersonic flow in periodically deformed cylindrical ducts. 

5.4. Parallel flow into an inclined ideal cylinder 
In order to complete our discussion of elementary supersonic flows in cylindrical 
ducts, we will finally consider a basic case of non-axisymmetric flow. Consider an 
undeformed ideal cylinder at small incidence angle E (measured in the ( r ,  cp, y)-system) 
to a uniform parallel flow with velocity wo, Mach number Mo, density po etc. as 
illustrated in figure 13. The initial and boundary conditions of the problem are 

(5.21~) 

(5.21b) 

440,l) = 0. (5.21~) 

By substituting (5.21) into (2.19) and (2.20), we obtain the following velocity potential: 

(5.22) 

Thus, the flow under study can be seen as the most simple three-dimensional analogy 
to the axisymmetric problem treated in § 5.1, since it is completely determined by 
& ( r , [ ) .  The density field is given by 

(5.23) 

with 6 p ( r ,  cp, () being the dimesionless density perturbation 

6p( r ,  cp, 0 = -&,dr, 0 cos cp . (5.24) 

A contour plot of d p ( r , c p , l )  in the half-plane cp = 0 is given in figure 13. Since 
the corresponding three-dimensional flow field is somewhat hard to imagine from 
a contour plot, surface plots of d p ( r , c p , [ )  at various locations l = const. are in 
addition presented in figure 14. Similarly to the axisymmetric case discussed in 5 5.1, 
perturbations originate on the circumference of the duct edge at r = 1, 5 = 0, but in 
the present case they are modulated by the cosine of the azimuthal angle cp. At cp = 0, 
the boundary streamlines are bent towards the axis and thus compression waves are 
propagating along the downstream surface of the leading Mach cone, while at cp = x, 
the streamlines are bend away from the axis resulting in an expansion wave of identical 
magnitude. At cp = n/2, the streamlines remain undistorted and, consequently, no 
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FIGURE 11.  Coaxial inflow into a wavy axisymmetric pipe whose cross-section varies as - sin w [ .  

(a) w = n/3 ;  (b)  w = 2 ~ / 3 .  Problem geometry (top) and 6 p  ( I ,  [) (bottom). 

expansion or compression waves are produced. Close to the axis, radial focussing 
occurs as in the axisymmetric case to produce regions of very high and low density 
in the vicinity of = 1. On crossing the axis, the waves are transformed from the 
discontionuous skewsymmetric type into the logarithmic symmetric type to travel 
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FIGURE 12. Coaxial inflow into a wavy axisymmetric pipe whose cross-section varies as cosw[. (a) 

w = n/3; ( b )  w = 2n/3. Problem geometry (top) and 6 p  ( r , O  (bottom). 

further towards the wall. Thus, the whole physical mechanism works very similarly 
to the axisymmetric case, the only qualitative difference consisting in the asymmetry 
due to the modulation by cos cp and the fact that the axis remains undisturbed, since 
all perturbations cancel out there. 
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FIGURE 13. Parallel inflow into an inclined ideal cylinder. Problem geometry (top) and 

dimensionless density perturbation 6 p ( r ,  q, [) in the half-plane rp = 0 (bottom). 

6. Summary and conclusions 
In this paper, the linear potential theory of steady internal supersonic flow in 

slightly deformed quasi-cylindrical ducts has been presented. By decomposition 
of the flow into a uniform parallel flow and small irrotational perturbations, the 
mathematical formulation in 5 2 leads to an initial-boundary value problem for the 
wave equation (2.2). While the inhomogeneous boundary condition (2.6) requires 
the radial velocity component at the wall to be proportional to axial duct slope, the 
initial conditions (2.7) describe the velocity perturbations at the entry of the duct. 
The general solution (2.9) arises as an infinite double series, which can be interpreted 
as a harmonic Fourier series in the azimuthal angle q with each coefficient being 
itself a Dini series, whose coefficients obey the well-known ordinary differential 
equation (2.14) of a mass-spring-system with external exciting force. Thus, the 
problem of determining the complete flow inside a quasi-cylindrical duct with arbitrary 
three-dimensional contour function and inflow conditions can in general be considered 
as formally solved. 

As was first pointed out by Ward (1945), linear potential theory may provide 
solutions with singularities, thus leading to non-uniformly converging series which 
are unsuitable for direct numerical computation. For the case of harmonic azimuthal 
dependence of the velocity potential, it has been shown in 5 3 that this phenomenon 
arises whenever abrupt bending of the streamlines and thus, in physical reality, shock 
or expansion waves occur, which linear potential theory is unable to describe correctly. 
By means of the decomposition (3.13), the singular parts of any such solution can 
be expressed in terms of the first derivatives of the universal series (3.11), which 
themselves can be evaluated by an analytical method based on Kummer’s series 
transformation. For a broad class of solutions including the general axisymmetric 
case, the difficulties preventing the practical application of linear potential theory 
have thus been resolved. 
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<= 0 

<= 1.5 

FIGURE 14. Parallel inflow into an inclined ideal cylinder. Surface plots of the dimensionless density 
perturbation 6 p ( r ,  cp, [) in the semicircle 0 < r < 1, 0 < cp < 7~ at various locations [ = const. 

For a qualitative understanding of the resulting flow fields, the asymptotic laws 
governing the propagation of small perturbations along the characteristics of the wave 
equation have been derived in 0 4. To a first order of approximation, perturbations 
of axial velocity (and thus pressure, density and temperature) are reflected without 
phase shift at the wall, whereas the transmission of the axis results in a phase shift 
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of x /2 ,  thus changing the symmetry properties of a perturbation with respect to the 
characteristic. Similarly, while a perturbation of radial velocity is reflected at the wall 
with a phase shift of x, it suffers a phase shift of -x/2 on crossing the axis of the 
duct. While the asymptotic reflection law could be intuitively expected since the same 
result holds exactly in the case of plane flow, no analogy exists for the asymptotic 
transmission law. In addition, perturbations increase asymptotically as r-lI2 as the 
axis is approached, since on travelling from the wall to the axis on the surface of a 
Mach cone, the perturbations are focussed into a single point. 

Some elementary cases of axisymmetric and non-axisymmetric flows have been 
discussed in Q 5.  For the case of a discontinuity in wall slope, the flows exhibit 
a characteristic cellular pattern which is strongly dominated by the periodically 
distributed singularities and regions of extreme magnitudes of the flow variables in 
the vicinity of the focus points on the axis, whereas for smooth wall contours, the flow 
variables are bounded and continuous throughout the field and singularities occur 
only in their higher derivatives. 
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